Density and temperature of energetic electrons in the Earth’s magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle
نویسندگان
چکیده
Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ∼0.1–1.0 MeV), in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L= 6 and L= 22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW= 500–1000 km s−1) compared to low-speed solar wind (VSW= 100–400 km s−1). These results have important implications for understanding (a) how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b) if the magnetotail is a source or a sink for the outer electron radiation belt.
منابع مشابه
Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملDetection and Modeling of Medium-Scale Travelling Ionospheric Disturbances in Iran Region
Ionosphere layer variations are divided into regular and irregular. Regular changes can be considered as daily changes, changes depending on latitude and changes due to solar activity. Travelling Ionospheric Disturbances (TID) is one of the irregular changes of ionosphere which categorized in small, medium and large scales. Medium-scale Travelling Ionospheric Disturbance (MSTID) which are propa...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملApplication of Network RTK Positions and Geometric Constraints to the Problem of Attitude Determination Using the GPS Carrier Phase Measurements
Nowadays, navigation is an unavoidable fact in military and civil aerial transportations. The Global Positioning System (GPS) is commonly used for computing the orientation or attitude of a moving platform. The relative positions of the GPS antennas are computed using the GPS code and/or phase measurements. To achieve a precise attitude determination, Carrier phase observations of GPS requiring...
متن کاملShort-period solar cycle signals in the ionosphere observed by FORMOSAT-3/COSMIC
[1] We analyze 2 years of the FORMOSAT-3/COSMIC GPS radio occultation data to study the response of the Earth’s ionosphere to the solar rotation (27-day) induced solar flux variations. Here we report electron density variations in the ionosphere ( 100–500 km) associated with the 27-day solar cycle. The peak-to-peak variation in electron density at low latitudes in the F2 region is about 10–10 e...
متن کامل